If it's not what You are looking for type in the equation solver your own equation and let us solve it.
198-40y+2y^2=0
a = 2; b = -40; c = +198;
Δ = b2-4ac
Δ = -402-4·2·198
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-4}{2*2}=\frac{36}{4} =9 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+4}{2*2}=\frac{44}{4} =11 $
| 25=106-9j | | 2=(5+n) | | 4(x-9)=4(9=1/3x) | | 12+4x=3+7x-9 | | 2t=60 | | q+69/4=30 | | 35x=x-100 | | 44/48=33/x | | 4⋅10−3x=18 | | 576=9(s+48) | | 3/a-5/a=2 | | 67+27f=337 | | 180+30x=75 | | 15=-85-25x | | -6u+14u=-8 | | 1+x2=5 | | r/6+6=20 | | x=100+35x | | 16r+r-16r=12 | | –2(n−4)=–14 | | 85-2x=-30-9x | | 30=6-2x | | 32=4h | | 17d+-17d-18d+16d-7d=18 | | 6k=7;k=12 | | 13x+4=130 | | –2=1+–3g | | -15h+20h+9h=14 | | 6w-4w+2w+w=20 | | x+15/3=-2 | | 2/5x+21=-1/5(8x-25)-2 | | 3x-33=2x+20 |